In Motion Review \#1

(Definitions, Graphing Motion)
Answers

Part A - Multiple Choice

1. D
2. D
3. A
4. B
5. A
6. C
7. A

Part B - Constructed Response

1. A car travels 20 km North turns around, travels 40 km South and then travels 10 km North. Calculate the displacement of the car.
```
positive direction=North
d=20km}-40\textrm{km}+10\textrm{km
d=-10km or 10km South
```

2. A bicycle travels 210 m West in 30 s . Calculate the velocity of the bicycle.

$$
\begin{aligned}
v & =\frac{d}{t} \\
v & =\frac{200}{30} \\
v & =7 \mathrm{~m} / \mathrm{s} \text { West }
\end{aligned}
$$

3. A boy walks for 120 s at a speed of $1.5 \mathrm{~m} / \mathrm{s}$. How far does he go?

$$
\begin{aligned}
& v=\frac{d}{t} \\
& 1.5=\frac{d}{120} \\
& d=180 \mathrm{~m}
\end{aligned}
$$

4. A girl runs a 200 m race at a speed of $2.0 \mathrm{~m} / \mathrm{s}$. How long does it take her?

$$
\begin{aligned}
v & =\frac{d}{t} \\
2 & =\frac{200}{t} \\
t & =100 s
\end{aligned}
$$

5. A drag racer accelerates from rest $(0 \mathrm{~m} / \mathrm{s})$ to $35 \mathrm{~m} / \mathrm{s}$ in 5 s . Calculate the acceleration.

$$
\begin{aligned}
& a=\frac{v}{t} \\
& a=\frac{35-0}{5} \\
& a=7 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

6. A car slows down at a rate of $1.2 \mathrm{~m} / \mathrm{s}^{2}$ from a speed of $25 \mathrm{~m} / \mathrm{s}$. How long does it take the car to stop?

$$
\begin{aligned}
& a=\frac{v}{t} \\
& 1.2=\frac{0-25}{t} \\
& t=20.8 \mathrm{~s}
\end{aligned}
$$

7. A rocket, starting from rest, accelerates at a rate of $8.0 \mathrm{~m} / \mathrm{s}^{2}$. How fast is going after 10 s ?

$$
\begin{aligned}
& a=\frac{v}{t} \\
& 8=\frac{v_{f}-0}{10} \\
& v_{f}=80 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

8. A train accelerating at a rate of $-2.0 \mathrm{~m} / \mathrm{s}^{2}$ comes to a stop in 60 s . How fast was it originally traveling?

$$
\begin{aligned}
& a=\frac{v}{t} \\
& -2=\frac{0-v_{i}}{60} \\
& v_{i}=120 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

9. The following position-time graph represents the position of a boy walking along the sidewalk. Positive position is North.

Describe the motion during the following time intervals.
(a) 0-10 minutes \qquad walking north at a constant velocity
(b) 10-15 minutes \qquad
(c) 20-25 minutes \qquad walking south at a constant velocity
(d) 30-35 minutes \qquad walking north while speeding up
10. The following velocity-time graph represents the movement of a toy car. The positive direction is east.

Describe the motion during the following time intervals:
(a) $0-5 \mathrm{~s}$ moving west, speeding up
(b) $5-6 \mathrm{~s}$ __moving west, constant velocity
(c) 6-7 s __ moving west, slowing down
(d) $7-8 \mathrm{~s}$ stationary
(e) 14-19 s __ moving east, slowing down
11. A dog, starting at a position of 10 m , walks forwards at a speed of $0.5 \mathrm{~m} / \mathrm{s}$ for 10 s . The dog stops for 10 s and then runs back with a speed of $1.5 \mathrm{~m} / \mathrm{s}$ for 10 s . Create a position-time graph to represent the motion of the dog.

12. A car, starting with a speed of $25 \mathrm{~m} / \mathrm{s}$, slows down at a rate of $2.0 \mathrm{~m} / \mathrm{s}^{2}$ for 10 s . The car maintains this speed for 10 s and then accelerates at a rate of $1.5 \mathrm{~m} / \mathrm{s}^{2}$ for 10 s . Graph the speed of the car with respect to time.

